Proximal and First-Order Methods for Convex Optimization
نویسندگان
چکیده
We describe the proximal method for minimization of convex functions. We review classical results, recent extensions, and interpretations of the proximal method that work in online and stochastic optimization settings.
منابع مشابه
First-order Convex Optimization Methods for Signal and Image Processing Ph.D. Thesis
In this thesis we investigate the use of first-order convex optimization methods applied to problems in signal and image processing. First we make a general introduction to convex optimization, first-order methods and their iteration complexity. Then we look at different techniques, which can be used with first-order methods such as smoothing, Lagrange multipliers and proximal gradient methods....
متن کاملConvergence analysis of inexact proximal Newton-type methods
We study inexact proximal Newton-type methods to solve convex optimization problems in composite form: minimize x∈Rn f(x) := g(x) + h(x), where g is convex and continuously differentiable and h : R → R is a convex but not necessarily differentiable function whose proximal mapping can be evaluated efficiently. Proximal Newton-type methods require the solution of subproblems to obtain the search ...
متن کاملExact Worst-Case Performance of First-Order Methods for Composite Convex Optimization
We provide a framework for computing the exact worst-case performance of any algorithm belonging to a broad class of oracle-based first-order methods for composite convex optimization, including those performing explicit, projected, proximal, conditional and inexact (sub)gradient steps. We simultaneously obtain tight worst-case convergence guarantees and explicit problems on which the algorithm...
متن کاملAvoiding Synchronization in First-Order Methods for Sparse Convex Optimization
Parallel computing has played an important role in speeding up convex optimization methods for big data analytics and large-scale machine learning (ML). However, the scalability of these optimization methods is inhibited by the cost of communicating and synchronizing processors in a parallel setting. Iterative ML methods are particularly sensitive to communication cost since they often require ...
متن کاملComputing proximal points of nonconvex functions
The proximal point mapping is the basis of many optimization techniques for convex functions. By means of variational analysis, the concept of proximal mapping was recently extended to nonconvex functions that are prox-regular and prox-bounded. In such a setting, the proximal point mapping is locally Lipschitz continuous and its set of fixed points coincide with the critical points of the origi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013